

# 802.11d & 802.11h 在 WLAN 中的应用

fox210317@sina.com lifz@cvanguard.com 2024-06-17

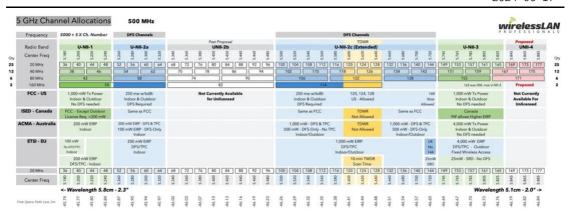


#### 1. 概念及功能

#### 1.1. 802.11d

IEEE 802.11d-2001 是对 IEEE 802.11 规范的一项修正,它增加了对"additional regulatory domains(额外的监管领域)"的支持。该支持包括向 beacon frame(信标)、Probe requests(探测请求)和 Probe responses(探测响应)中添加国家信息元素。国家信息元素简化了创建符合世界各地不同规定的 802.11 无线接入点和客户设备的过程。该修正已被纳入发布的 IEEE 802.11-2012 标准中,后续在 802.11-2016 修订标准有更详细的关于 802.11d 的描述。

■ beacon frame、probe response frame 字段中包含了国家信息 说明:在 Wikipedia 中描述的 Probe request 中也会有 country information。实际在使用 iphone12 测试中,抓取了 Probe Request Frame 中并未发现包含该信息。同时也不排除 一些其他使用场景,如 AP 的网桥互联方式。


#### 1.2. 802.11h

IEEE 802.11h-2003,简称 802.11h,指的是 2003 年添加到 IEEE 802.11 标准中的<u>用于频谱和发射功率管理扩展</u>的修正案。它解决了与卫星和雷达在相同的 5 GHz 频段上发生干扰的问题。该标准为 802.11a 物理层提供了<mark>动态频率选择 (DFS: Dynamic Frequency Selection)</mark>和发射功率控制(TPC: Transmit Power Control)。如果检测到这些信号,网络会自动切换到另一个信道。它后来已经被整合到完整的 IEEE 802.11-2007 标准中。同样在 802.11-2016 也有一部分描述。

- 发射功率控制(TPC)会降低每个网络发送器的无线频率(RF)输出功率,以最大程度地减少干扰风险。
- 802.11h 提供了检测、避免对 5GHz 卫星、雷达系统的干扰。
- 802.11h 修正案还定义了一个新的频段提供 802.11 无线接口传输信息使用,即 U-NII-2 扩展(UNII-2 Extended; ch100-144)
- DFS 信道: U-NII-2: ch52-64、U-NII-2c: ch100-144

Tips: 美国与欧洲规定,使用 U-NII-2、U-NII-2 Extended 频段传输信息时,必须部署雷达探测与回避技术。频段、信道信息如下图所示:



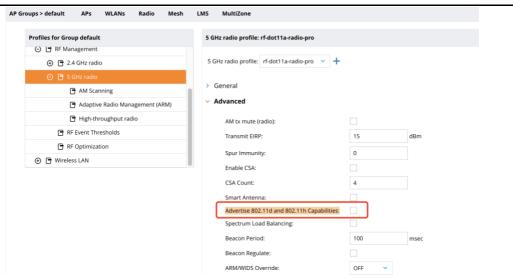


## 1.2.1. DFS 服务的功能:

- 接入点根据支持的信道,允许客户端进行关联。如果客户端成为接入点所在无线网络的成员,则称二者建立关联。
- 接入点可以将信道"禁声"以测试是否存在雷达传输。
- 在使用信道之前,接入点可以测试信道是否存在雷达传输(我们常常可以在 ARUBA 控制器的日志中看到,AP 在工作前,都会检测雷达信道)。
- 接入点可以检测当前信道和其他信道是否存在雷达传输。
- 如果检测到雷达传输,接入点将停止操作以避免干扰。
- 检测到干扰时,接入点可以选择不同的信道进行传输。并通知所有关联到自己的客户端。

## 1.2.2. 接入点的 DFS 功能如何工作的?

- ◆ 每当接入点首次启动 DFS 信道时,无线接口必须监听 60 秒后才能使用该信道传输数据;
- ◆ 如果检测到雷达脉冲,接入点无法使用该信道,必须尝试其他信道;
- ◆ 如果在最初的 60 秒监听期内没有检测到雷达传输,则接入点可以在该信道发送 beacon; TIPS: 在欧洲国家针对 ch120、124、128 更为严格,接入点必须监听 10 分钟。该三个信道为 TDWR(多普勒天气雷达)


# ARUBA 的 DFS 功能

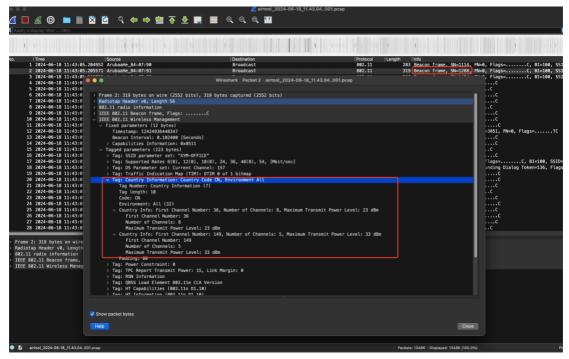
开启 dot11h, AP 会通告 802.11d、802.11h(包含 TPC)的能力。

|        | 5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                 |   |          |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|
| dot11h | Enable advertisement of 802.11d (Country Information) and 802.11h (TPC or Transmit Power Control) capabilities. This parameter is disabled by default. | _ | disabled |

#### 配置路径:



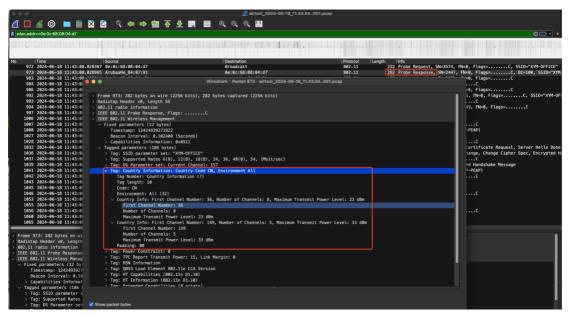



解释: 启用 802.11d (国家信息) 和 802.11h (TPC 或传输功率控制) 功能的通告。默认情况下禁用此参数。

该项参数开启时仅在 AP 面向客户端的 802.11 管理帧中存在, 而 AP 面向空口的 DFS 功能是无法被关闭的, 这是因为"监管域"的强制性要求。

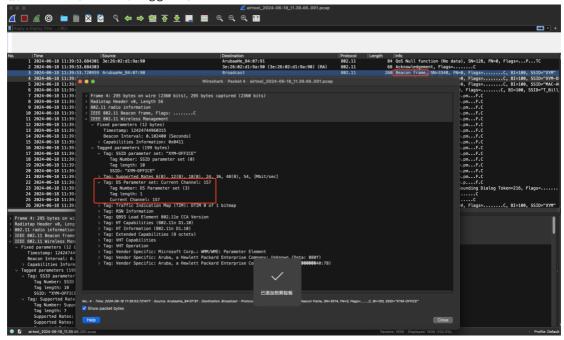
#### 空口抓包的信息:

1) 开启 dot11h 时抓取的 beacon:


在 IEEE 802.11 Wireless Management -Tagged parameters 字段中有对应的字段填充国籍信息、信道数量、最大发射功率、TPC 等参数





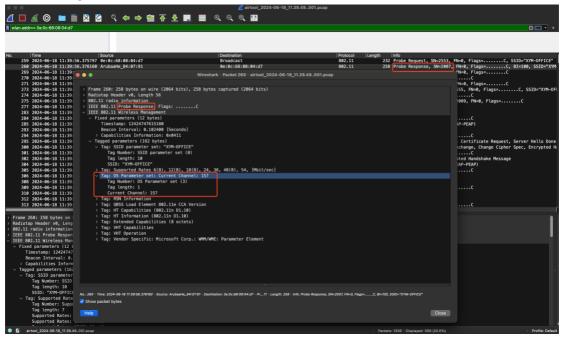

# 2) 开启 dot11h 时抓取的 probe response

在 IEEE 802.11 Wireless Management -Tagged parameters 字段中有对应的字段填充国籍信息、信道数量、最大发射功率、TPC 等参数



# 3) 未开启 802.11h 时抓取的 beacon

在 IEEE 802.11 Wireless Management -Tagged parameters 字段中没有国籍信息,仅有工作信道以及其他相同的 tagged 字段




5



# 4) 未开启 802.11h 时抓取的 probe response

#### 同样,在 tag 字段无国籍信息



## 1.2.3. 客户端的 DFS 功能如何工作的?

- ◆ 802.11 客户端无线接口同样必须遵守雷达避让的规定,因此客户端一般不会首先通过 任何 DFS 信道发送 probe request。
- ◆ 客户端扫描 DFS 信道时,如果侦听到接入点使用该 DFS 信道发送 beacon frame,就会假定该 DFS 信道不存在雷达传输。因此可以完成关联交换、身份验证的过程。

## 1.2.4. 接入点、客户端二者的 DFS 协同工作的 CSA 机制

如果接入点和客户端正在使用 DFS 信道,当检测到雷达脉冲时,接入点以及客户端必须离开信道。如果在当前的 DFS 频率检测到雷达传输,接入点向所有关联的客户端发送信道切换通告(CSA:Channel Switch Announcement)帧,通知它们切换另一个信道。接入点和客户端需要在 10 秒内离开 DFS 信道。接入点可能会发送多个 CSA 帧,确保所有客户端离开当前信道。一般接入点会切换至非 DFS ch36。后续也新增了很多 DFS 信道的等待时间优化、多个信道的选择机制。

雷达脉冲测试中,使用的是 DFS Radar Signal Generator 软件;

发射标准 FCC 06-96

Radar Type 1 - Short Pulse Stream. Fixed

Radar Type 2 -Short Pulse Stream. 1-5 us pulse width



Radar Type 3 - Short Pulse Stream. 6-10 us pulse width

Radar Type 4 - Short Pulse Stream. 11-20 us pulse width

Radar Type 5 - Long Pulse Stream. with FM chip

Radar Type 6 -Long Pulse Stream. including frequency hopping

Radar Type 7 -Bin 1-Weather radar now under proposal -Generates 30 waveforms.

# ARUBA 的 CSA 功能

| Parameter | Description                                                                                                                                                                                                                                                                 | Range | Default  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| csa       | Channel Switch Announcement (CSA), as defined by IEEE 802.11h, allows an AP to announce that it is switching to a new channel before it begins transmitting on that channel. Clients must support CSA in order to track the channel change without experiencing disruption. | _     | disabled |
| csa-count | Number of CSA announcements that are sent before the AP begins transmitting on the new channel.                                                                                                                                                                             | 1-16  | 4        |

#### 解释:

**CSA:** IEEE 802.11h 定义的信道切换公告 (CSA) 允许 AP 在开始在该信道上传输之前宣布它正在切换到新信道。

客户必须支持 CSA, 以便在不中断的情况下跟踪渠道变化;

该功能的使用需要开启 802.11h

CSA-COUNT: AP 开始在新信道上传输之前发送的 CSA 公告数。

该功能的使用需要开启 802.11h、csa

### 1.2.5. TPC 服务的功能:

- 客户端可以根据发射功率与接入点建立关联
- 如果法规允许,接入点和客户端遵守信道的最大发射功率电平
- 接入点可以指定某个或所有关联到自己的客户端使用的发射功率
- 接入点可以根据实际的射频环境参数(如路径损耗)调整客户端的传输功率。

TIPS: 客户端与接入点之间通过管理帧交换 DFS 和 TPC 的使用信息。



# 管理帧如下表:

| Type value | Туре        | Subtype value | Subtype description    |
|------------|-------------|---------------|------------------------|
| (bits 3-2) | description | (bits 7-4)    |                        |
| 00         | Management  | 0000          | Association Request    |
| 00         | Management  | 0001          | Association Response   |
| 00         | Management  | 0010          | Reassociation Request  |
| 00         | Management  | 0011          | Reassociation Response |
| 00         | Management  | 0100          | Probe Request          |
| 00         | Management  | 0101          | Probe Response         |
| 00         | Management  | 0110          | Timing Advertisement   |
| 00         | Management  | 0111          | Reserved               |
| 00         | Management  | 1000          | Beacon                 |
| 00         | Management  | 1001          | ATIM                   |
| 00         | Management  | 1010          | Disassociation         |
| 00         | Management  | 1011          | Authentication         |
| 00         | Management  | 1100          | Deauthentication       |
| 00         | Management  | 1101          | Action                 |
| 00         | Management  | 1110          | Action No Ack (NACK)   |
| 00         | Management  | 1111          | Reserved               |

# 控制帧如下表:

| Type value | Туре        | Subtype value | Subtype description     |
|------------|-------------|---------------|-------------------------|
| (bits 3-2) | description | (bits 7–4)    |                         |
| 01         | Control     | 0000–0001     | Reserved                |
| 01         | Control     | 0010          | Trigger                 |
| 01         | Control     | 0011          | TACK                    |
| 01         | Control     | 0100          | Beamforming Report Poll |
| 01         | Control     | 0101          | VHT/HE NDP Announcement |
| 01         | Control     | 0110          | Control Frame Extension |
| 01         | Control     | 0111          | Control Wrapper         |
| 01         | Control     | 1000          | Block Ack Request (BAR) |
| 01         | Control     | 1001          | Block Ack (BA)          |
| 01         | Control     | 1010          | PS-Poll                 |
| 01         | Control     | 1011          | RTS                     |
| 01         | Control     | 1100          | CTS                     |
| 01         | Control     | 1101          | ACK                     |
| 01         | Control     | 1110          | CF-End                  |
| 01         | Control     | 1111          | CF-End + CF-ACK         |



### 2. 802.11d、802.11h 在 WLAN 中的应用

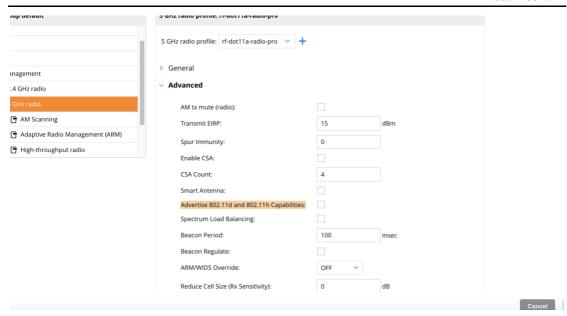
## 2.1. 中国可用信道

在中国 5GHz 可用的 20MHz 信道如下 (未展示信道捆绑), 共 13 个 20MHz 信道:

| Seq | PHY Type | Allowed Channels | Frequency Range |
|-----|----------|------------------|-----------------|
|     |          |                  | (MHz)           |
| 1.  | 802.11a  | 36 (U-NII-1)     | 5170-5190       |
| 2.  | 802.11a  | 40 (U-NII-1)     | 5190-5210       |
| 3.  | 802.11a  | 44 (U-NII-1)     | 5210-5230       |
| 4.  | 802.11a  | 48 (U-NII-1)     | 5230-5250       |
| 5.  | 802.11a  | 52 (U-NII-2a)    | 5250-5270       |
| 6.  | 802.11a  | 56 (U-NII-2a)    | 5270-5290       |
| 7.  | 802.11a  | 60 (U-NII-2a)    | 5290-5310       |
| 8.  | 802.11a  | 64 (U-NII-2a)    | 5310-5330       |
| 9.  | 802.11a  | 149 (U-NII-3)    | 5735-5755       |
| 10. | 802.11a  | 153 (U-NII-3)    | 5755-5775       |
| 11. | 802.11a  | 157 (U-NII-3)    | 5775-5795       |
| 12. | 802.11a  | 161 (U-NII-3)    | 5795-5815       |
| 13. | 802.11a  | 165 (U-NII-3)    | 5815-5835       |

#### 在现阶段高密的职场部署 WLAN 有如下特点:

- ◆ 单颗 AP 普遍接入终端数量在 40-60 个左右;
- ◆ 特殊区域的 ch52-64 不定时避让,造成网络中断;
- ◆ AP的 5GHz 工作频宽 20-40MHz 不等;
- ◆ AP 部署密集. 漫游体验差;


### 2.2. 802.11h 的使用建议

#### 使用前提:

- 确保终端设备支持 U-NII-2a 信道 (中国区 ch52、56、60、64), 如终端普遍支持其他 监管域的信道, 经过测试后建议使用;
- 确认周围无 U-NII-2a 的雷达使用时,关闭 802.11h(与客户端不协商); 但 AP 面向空口仍然使用 DFS 功能;

《Enterprise-WLAN-Optimization-ChecklistAruba 无线网络优化项-v7》中建议开启此功能



